top of page

Parenthood Support Group

Public·137 members

That Winter The Wind Blows Download Full


Leaky windows or ducts, old appliances, or inefficient heating and cooling systems can cost families money during winter heating seasons. The Energy Saver Do-It-Yourself (DIY) Savings Projects from the U.S. Department of Energy offers easy, step-by-step instructions to home energy efficiency improvements that will save you energy and money.




That Winter The Wind Blows Download Full



The Maine State Housing Authority (MaineHousing) is an independent authority that addresses problems of unsafe, unsuitable, overcrowded, and unaffordable housing. Working with Community Action Agencies around the state, MaineHousing administers home heating assistance and weatherization programs for Maine people to stay warm during the winter.


Wind is created by the unequal heating of the Earth's surface by the sun. Wind turbines convert the kinetic energy in wind into mechanical power that runs a generator to produce clean electricity. Today's turbines are versatile modular sources of electricity.[3] Their blades are aerodynamically designed to capture the maximum energy from the wind.[4] The wind turns the blades, which spin a shaft connected to a generator or the generator's rotor, which makes electricity.


In addition to zoning issues, your neighbors might object to a wind turbine that blocks their view, or they might be concerned about the sound it produces. Most zoning and aesthetic concerns can be addressed by supplying objective data. For example, a typical 2-kilowatt wind turbine operates at a noise level of approximately 55 dB 50 feet away from the hub of the turbine.[10] At that level, the sound of the wind turbine can be picked out of surrounding noise if a conscious effort is made to hear it.


One- to 10-kW turbines can be used in applications such as pumping water. Wind energy has been used for centuries to pump water and grind grain. Although mechanical windmills still provide a sensible, low-cost option for pumping water in low-wind areas, farmers and ranchers are finding that wind-electric pumping is more versatile and they can pump twice the volume for the same initial investment. In addition, mechanical windmills must be placed directly above the well, which may not take advantage of available wind resources. Wind-electric pumping systems can be placed where the wind resource is the best and connected to the pump motor with an electric cable. However, in areas with a low wind resource, mechanical windmills can provide more efficient water pumping.


Small wind turbines can be divided into two groups: horizontal axis and vertical axis. The most commonly used turbine in today's market is the horizontal-axis wind turbine. These turbines typically have two or three blades that are usually made of a composite material such as fiberglass. Vertical-axis wind turbines consist of two types: Savonius and Darrieus. A Savonius turbine can be recognized by its "S" shaped design when viewed from above. Darrieus turbines look like an eggbeater and have vertical blades that rotate into and out of the wind.[13]


Because wind speeds increase with height, the turbine is mounted on a tower. In general, the higher the tower, the more power the wind system can produce. The tower also raises the turbine above the air turbulence that can exist close to the ground because of obstructions such as hills, buildings, and trees. A general rule of thumb is to install a wind turbine on a tower with the bottom of the rotor blades at least 30 feet (9 meters) above any obstacle that is within 300 feet (90 meters) of the tower.[14] Relatively small investments in increased tower height can yield very high rates of return in power production.


There are two types of towers: self-supporting (free-standing) and guyed. Guyed towers, which are the least expensive, can consist of lattice sections, pipe, or tubing (depending on the design); supporting guy wires; and the foundation. They are easier to install than self-supporting towers. However, because the guy radius must be one-half to three-quarters of the tower height, guyed towers require space to accommodate them. Although tilt-down towers are more expensive, they offer the consumer an easy way to perform maintenance on smaller lightweight turbines (usually 5 kW or smaller). Tilt-down towers can also be lowered to the ground during hurricanes and other hazardous weather conditions. Aluminum towers are prone to cracking and should be avoided. Most turbine manufacturers provide wind energy system packages that include a range of tower options.[15]


Costs in addition to the turbine and the tower are the balance of system, including parts and labor, which will depend on your application. Most manufacturers can provide you with a system package that includes all the parts you need for your application. For example, the parts required for a water-pumping system will be different from the parts required for a residential, grid-connected application. The balance of system equipment required will also depend on whether the system is grid-connected, stand-alone, or part of a hybrid system. For a residential grid-connected application, the balance of system parts may include a controller, storage batteries, a power conditioning unit (inverter), wiring, foundation, and installation. Many wind turbine controllers, inverters, or other electrical devices may be stamped by a recognized testing agency, such as Underwriters Laboratories or Intertek.


Small wind turbines generate direct current (DC) electricity. In very small systems, DC appliances operate directly off the batteries. If you want to use standard appliances that use conventional household alternating current (AC), you must install an inverter to convert DC electricity from the batteries to AC. Although the inverter slightly lowers the overall efficiency of the system, it allows the home to be wired for AC, a definite plus with lenders, electrical code officials, and future homebuyers.


To justify your investment in a small wind turbine, you will want assurances that your turbine model has been evaluated for safety, performance, and functionality.[18] The following resources will help you.


Research small wind turbine companies to be sure they offer certified turbines and that parts and service will be available when you need them. Ask for references from past customers with installations similar to the one you are considering. Ask the system owners about performance, reliability, and maintenance and repair requirements, and whether the system is meeting their expectations. Also, find out how long the warranty lasts and what it includes.


According to the AWEA Small Wind Turbine Performance and Safety Standard, the Rated Annual Energy of a wind turbine is the calculated total energy that would be produced during a 1-year period with an average wind speed of 5 meters/second (m/s, or 11.2 mph).[22] The following formula illustrates factors that are important to the performance of a wind turbine. Notice that the wind speed (V) has an exponent of 3 applied to it. This means that even a small increase in wind speed results in a large increase in power. That is why a taller tower will increase the productivity of any wind turbine by giving it access to higher wind speeds.


Although the calculation of wind power illustrates important features about wind turbines, the best measure of wind turbine performance is annual energy output. The difference between power and energy is that power (kilowatts [kW]) is the rate at which electricity is consumed while energy (kilowatt-hours [kWh]) is the quantity consumed. An estimate of the annual energy output from your wind turbine, kWh/year, is the best way to determine whether a particular wind turbine and tower will produce enough electricity to meet your needs. Contact a wind turbine manufacturer, a dealer/installer, or a site assessor to help you estimate the energy production you can expect. They will use a calculation based on the particular wind turbine power curve, the average annual wind speed at your site, the height of the tower that you plan to use, micro-siting characteristics of your site and, if available, the frequency distribution of the wind (an estimate of the number of hours that the wind will blow at each speed during an average year). They should also adjust this calculation for the elevation of your site.


The Wind Energy Payback Period Workbook is a Microsoft Excel spreadsheet tool that can help you analyze the economics of a small wind electric system and decide whether wind energy will work for you. It asks you to provide information about how you will finance the system, the characteristics of your site, and the properties of the system you're considering. It then provides you with a simple payback estimation (assumes no increase in electricity rates) in years. If the number of years required to regain your capital investment is greater than or almost equal to the life of the system, then wind energy will not be practical for you.


Prior to conducting an on-site measurement campaign, some small wind project developers use state wind maps to conservatively estimate the wind resource at turbine hub height. While these maps can provide a general indication of good or poor wind resources, they do not provide a resolution high enough to identify local site features. State wind maps cannot include information on complex terrain, ground cover, wind speed distribution, direction distribution, turbulence intensity, and other local effects. Purchased maps or services can often provide higher resolution and more flexibility with zooming, orientation, and additional features. Pay attention to a map's height above ground as it relates to the potential project's tower height. Adjusting the wind speed for the height difference between the map and the turbine height adds a potential source of error depending on the wind shear exponent that is selected, and the greater the height difference the greater the potential error. Therefore, for small wind generator applications, 30- to 40-m wind maps are far more useful than 10-, 60-, 80-, or 100-m wind maps. It is also important to understand the resolution of the wind map or model-generated data set. If the resolution is lower than the terrain features, adjustments will be needed to account for local terrain effects.[26]


About

Welcome to the group! You can connect with other members, ge...

Subscribe Form

Thanks for submitting!

  • Facebook
  • Twitter
  • LinkedIn
  • Instagram

©2021 by Happy Campers Daycare.

bottom of page